35 research outputs found

    Canards and curvature: nonsmooth approximation by pinching

    Get PDF
    In multiple time-scale (singularly perturbed) dynamical systems, canards are counterintuitive solutions that evolve along both attracting and repelling invariant manifolds. In two dimensions, canards result in periodic oscillations whose amplitude and period grow in a highly nonlinear way: they are slowly varying with respect to a control parameter, except for an exponentially small range of values where they grow extremely rapidly. This sudden growth, called a canard explosion, has been encountered in many applications ranging from chemistry to neuronal dynamics, aerospace engineering and ecology. Canards were initially studied using nonstandard analysis, and later the same results were proved by standard techniques such as matched asymptotics, invariant manifold theory and parameter blow-up. More recently, canard-like behaviour has been linked to surfaces of discontinuity in piecewise-smooth dynamical systems. This paper provides a new perspective on the canard phenomenon by showing that the nonstandard analysis of canard explosions can be recast into the framework of piecewise-smooth dynamical systems. An exponential coordinate scaling is applied to a singularly perturbed system of ordinary differential equations. The scaling acts as a lens that resolves dynamics across all time-scales. The changes of local curvature that are responsible for canard explosions are then analyzed. Regions where different time-scales dominate are separated by hypersurfaces, and these are pinched together to obtain a piecewise-smooth system, in which curvature changes manifest as discontinuity-induced bifurcations. The method is used to classify canards in arbitrary dimensions, and to derive the parameter values over which canards form either small cycles (canards without head) or large cycles (canards with head)

    Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh Nagumo system

    Get PDF
    We investigate the organization of mixed-mode oscillations in the self-coupled FitzHugh-Nagumo system. These types of oscillations can be explained as a combination of relaxation oscillations and small-amplitude oscillations controlled by canard solutions that are associated with a folded singularity on a critical manifold. The self-coupled FitzHugh-Nagumo system has a cubic critical manifold for a range of parameters, and an associated folded singularity of node-type. Hence, there exist corresponding attracting and repelling slow manifolds that intersect in canard solutions. We present a general technique for the computation of two-dimensional slow manifolds (smooth surfaces). It is based on a boundary value problem approach where the manifolds are computed as one-parameter families of orbit segments. Visualization of the computed surfaces gives unprecedented insight into the geometry of the system. In particular, our techniques allow us to find and visualize canard solutions as the intersection curves of the attracting and repelling slow manifolds. © 2008 American Institute of Physics

    Canards and curvature: the 'smallness of ε' in slow-fast dynamics

    Get PDF

    Effects of butter from mountain-pasture grazing cows on risk markers of the metabolic syndrome compared with conventional Danish butter: a randomized controlled study.

    Get PDF
    BACKGROUND: There is considerable interest in dairy products from low-input systems, such as mountain-pasture grazing cows, because these products are believed to be healthier than products from high-input conventional systems. This may be due to a higher content of bioactive components, such as phytanic acid, a PPAR-agonist derived from chlorophyll. However, the effects of such products on human health have been poorly investigated. OBJECTIVE: To compare the effect of milk-fat from mountain-pasture grazing cows (G) and conventionally fed cows (C) on risk markers of the metabolic syndrome. DESIGN: In a double-blind, randomized, 12-week, parallel intervention study, 38 healthy subjects replaced part of their habitual dietary fat intake with 39 g fat from test butter made from milk from mountain-pasture grazing cows or from cows fed conventional winter fodder. Glucose-tolerance and circulating risk markers were analysed before and after the intervention. RESULTS: No differences in blood lipids, lipoproteins, hsCRP, insulin, glucose or glucose-tolerance were observed. Interestingly, strong correlations between phytanic acid at baseline and total (P<0.0001) and LDL cholesterol (P=0.0001) were observed. CONCLUSIONS: Lack of effects on blood lipids and inflammation indicates that dairy products from mountain-pasture grazing cows are not healthier than products from high-input conventional systems. Considering the strong correlation between LDL cholesterol and phytanic acid at baseline, it may be suggested that phytanic acid increases total and LDL cholesterol. TRIAL REGISTRATION: ClinicalTrials.gov, NCT0134358
    corecore